skip to main content


Search for: All records

Creators/Authors contains: "Roepe, A. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes. 
    more » « less
  2. A bstract A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 fb − 1 of pp collision data at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 GeV and a Standard Model production cross section, an observed upper limit of 0 . 145 is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of 0 . 103. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 GeV to 2 TeV are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1 . 0 pb for a scalar boson mass of 50 GeV to 0 . 1 pb at a mass of 2 TeV. 
    more » « less
  3. Abstract A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of "Equation missing" and recorded by the ATLAS detector corresponds to an integrated luminosity of 139  $$\text{ fb}^{-1}$$ fb - 1 . Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW ,  WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the $$(W/Z)Z(\rightarrow c{\bar{c}})$$ ( W / Z ) Z ( → c c ¯ ) process and 3.8 (4.6) standard deviations for the $$(W/Z)W(\rightarrow cq)$$ ( W / Z ) W ( → c q ) process. The $$(W/Z)H(\rightarrow c {\bar{c}})$$ ( W / Z ) H ( → c c ¯ ) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of "Equation missing" , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier $$|\kappa _c| < 8.5~(12.4)$$ | κ c | < 8.5 ( 12.4 ) , at the 95% confidence level. A combination with the ATLAS $$(W/Z)H, H\rightarrow b{\bar{b}}$$ ( W / Z ) H , H → b b ¯ analysis is performed, allowing the ratio $$\kappa _c / \kappa _b$$ κ c / κ b to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level. 
    more » « less
  4. A bstract Measurements of the production cross-sections of the Standard Model (SM) Higgs boson ( H ) decaying into a pair of τ -leptons are presented. The measurements use data collected with the ATLAS detector from pp collisions produced at the Large Hadron Collider at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 139 fb − 1 . Leptonic ( τ → ℓν ℓ ν τ ) and hadronic ( τ → hadrons ν τ ) decays of the τ -lepton are considered. All measurements account for the branching ratio of H → ττ and are performed with a requirement |y H | < 2 . 5, where y H is the true Higgs boson rapidity. The cross-section of the pp → H → ττ process is measured to be 2 . 94 ± $$ 0.21{\left(\mathrm{stat}\right)}_{-0.32}^{+0.37} $$ 0.21 stat − 0.32 + 0.37 (syst) pb, in agreement with the SM prediction of 3 . 17 ± 0 . 09 pb. Inclusive cross-sections are determined separately for the four dominant production modes: 2 . 65 ± $$ 0.41{\left(\mathrm{stat}\right)}_{-0.67}^{+0.91} $$ 0.41 stat − 0.67 + 0.91 (syst) pb for gluon-gluon fusion, 0 . 197 ± $$ 0.028{\left(\mathrm{stat}\right)}_{-0.026}^{+0.032} $$ 0.028 stat − 0.026 + 0.032 (syst) pb for vector-boson fusion, 0 . 115 ± $$ 0.058{\left(\mathrm{stat}\right)}_{-0.040}^{+0.042} $$ 0.058 stat − 0.040 + 0.042 (syst) pb for vector-boson associated production, and 0 . 033 ± $$ 0.031{\left(\mathrm{stat}\right)}_{-0.017}^{+0.022} $$ 0.031 stat − 0.017 + 0.022 (syst) pb for top-quark pair associated production. Measurements in exclusive regions of the phase space, using the simplified template cross-section framework, are also performed. All results are in agreement with the SM predictions. 
    more » « less
  5. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10 more » « less
  6. A bstract Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass 125 GeV decays into four leptons ( ℓ = e , μ ). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: H → XX/ZX → 4 ℓ , where the new boson X has a mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb − 1 at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into XX/ZX , improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where X is interpreted to be a dark boson. 
    more » « less
  7. Abstract This paper presents a measurement of the electroweak production of two jets in association with a $$Z\gamma $$ Z γ pair, with the Z boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125  $$\text {GeV}$$ GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton–proton collisions at $$\sqrt{s}$$ s = 13  $$\text {TeV}$$ TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $$Z\gamma $$ Z γ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is $$1.31\pm 0.29$$ 1.31 ± 0.29  fb. An observed (expected) upper limit of 0.37 ( $$0.34^{+0.15}_{-0.10}$$ 0 . 34 - 0.10 + 0.15 ) at 95% confidence level is set on the branching ratio of a 125  $$\text {GeV}$$ GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ( $$0.017^{+0.007}_{-0.005}$$ 0 . 017 - 0.005 + 0.007 ), assuming the Standard Model production cross-section for a 125  $$\text {GeV}$$ GeV Higgs boson. 
    more » « less